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Abstract 

Given an adequate simulation model of the 
task environment and payoff function that 
measures the quality of partially successful 
plans, competition-based heuristics such as 
genetic algorithms can develop high per- 
formance reactive rules for interesting 
sequential decision tasks. We have previ- 
ously described an implemented system, 
called SAMUEL, for learning reactive plans 
and have shown that the system can suc- 
cessfully learn rules for a laboratory scale 
tactical problem. In this paper, we 
describe a method for deriving explana- 
tions to justify the success of such empiri- 
cally derived rule sets. The method con- 
sists of inferring plausible subgoals and 
then explaining how the reactive rules 
trigger a sequence of actions (i.e., a stra- 
tegy) to satisfy the subgoals. 

1 Introduction 
This report is part of an on-going study con- 

cerning learning reactive plans for sequential deci- 
sion tasks given a simulation of the task environ- 
ment. In particular, we have been investigating tech- 
niques that allow a learning system to actively 
explore alternative behaviors in simulation, and to 
construct high performance rules from this experi- 
ence using competition-based methods. Our current 
research focuses on learning reactive rules for a 
variety of tactical scenarios. Learning tactical rules 
is especially difficult if the environment is only par- 
tially modeled, contains other independent agents, or 
permits only limited sensing of important state vari- 
ables. Such features reduce the utility of traditional 
projective problem solving (Mitchell, 1983; Minton 
et. al, 1989) and favor the use of reactive control 

rules that respond to current information and suggest 
useful actions (Agre and Chapman, 1987; Schoppers, 
1987). We have been investigating the usefulness of 
genetic algorithms and other competition-based 
heuristics (Grefenstette, 1988) to learn high perfor- 
mance reactive rules in the absence of a strong 
domain theory. The approach has been implemented 
in a system called SAMUEL (Grefenstette, 1989). One 
of the important differences between SAMUEL and 
many other genetic learning systems is that SAMUEL 

learns rules expressed in a high level rule language. 
The use of a symbolic rule language is intended to 
facilitate the incorporation of more powerful learn- 
ing methods into the system where appropriate. In 
this paper, we investigate the use of explanation- 
based learning methods to explain the success of the 
empirically learned plans found by the genetic learn- 
ing system, and to suggest possible improvements. 

SAMUEL consists of three major components: 
a problem specific module, a performance module, 
and a learning module. The problem specific module 
consists of the task environment simulation, or world 
model, and its interfaces. The performance module 
consists of a competition-based production system 
that performs matching, conflict resolution and credit 
assignment. The learning module uses a genetic 
algorithm to develop high performance reactive 
plans, each plan expressed as a set of condition- 
action rules. Each plan is evaluated by testing its 
performance in controlling the world model through 
the performance module. Genetic operators, such as 
crossover and mutation, produce plausible new plans 
from high performance precursors. 

Experiments have shown that SAMUEL learns 
highly effective reactive plans for laboratory scale 
tactical problems (Grefenstette, 1989). However, 
even though the individual rules of a plan can be 
interpreted, the strategy underlying the plan is often 
not apparent. We are currently expanding our focus 
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to include the derivation of explanations of 
SAMUEL'S reactive rules. These explanations are 
expected to clarify the system's performance to sys- 
tem users as well as to generate new reactive rules 
for SAMUEL. 

In this paper, we first discuss a simulated 
environment to which SAMUEL has been successfully 
applied. The remainder of the paper is devoted to 
describing our research on the topic of generating 
explanations of reactive plans. 

This work is part of an on-going study of 
genetic algorithms for learning tactical plans. The 
current system is detailed in (Grefenstette, Ramsey & 
Schultz, 1990). An analysis of the credit assignment 
methods in appears in (Grefenstette, 1988). A study 
of the effects of sensor noise on appears in (Schultz, 
Ramsey & Grefenstette, 1990). 

2 The Evasive Maneuvers Problem 
We have tested SAMUEL initially in the con- 

text of a particular task called Evasive Maneuvers 
(EM), inspired in part by (Erickson and Zytkow, 
1988). In the EM simulation, there are two objects of 
interest, a plane and a missile, which maneuver in a 
two-dimensional world. The object is to control the 
turning rate of the plane to avoid being hit by the 
approaching missile. The missile tracks the motion 
of the plane and steers toward the plane's anticipated 
position. The initial speed of the missile is greater 
than that of the plane, but the missile loses speed as it 
maneuvers. If the missile speed drops below some 
threshold, it loses maneuverability and drops out of 
the sky. It is assumed that the plane is more 
maneuverable than the missile, that is, the plane has 
a smaller turning radius. 

There exist six sensors that provide informa- 
tion about the current tactical state: 

1) last-turn: the current turning rate of the plane. 
This sensor can assume nine values, ranging from 
-180 degrees to 180 degrees in 45 degree increments. 
2) time: a clock that indicates time since detection of 
the missile. Assumes integer values between 0 and 
19. 
3) range: the missile's current distance from the 
plane. Assumes values from 0 to 1500 in increments 
of 100. 
4) bearing: the direction from the plane to the mis- 
sile. Assumes integer values from 1 to 12. The bear- 
ing is expressed in "clock terminology", in which 12 

o'clock denotes dead ahead of the plane, and 6 
o'clock denotes directly behind the plane. 
5) heading: the missile's direction relative to the 
plane. Assumes values from 0 to 350 in increments 
of 10 degrees. A heading of 0 indicates that the mis- 
sile is aimed directly at the plane's current position, 
whereas a heading of 180 means the missile is aimed 
directly away from the plane. 
6) speed: the missile's current speed measured rela- 
tive to the ground. Assumes values from 0 to 1000 in 
increments of 50. 

In addition to the sensors, there is one control 
variable, namely, the plane's turning-rate. Turning- 
rate has nine possible values, between -180 and 180 
degrees in 45 degree increments. The learning 
objective is to develop a set of decision rules that 
map current sensor readings into actions that suc- 
cessfully evade the missile whenever possible. The 
rule condition contains sensor ranges (which may be 
cyclic), and the action specifies a setting for the con- 
trol variable. An example of an actual decision rule 
learning by SAMUEL is the following: 

RULE 16: 
IF (and (last-turn [-135, 135]) (time [2, 12]) 

(range [0, 700]) (bearing [2, 6]) 
(heading [0, 30]) (speed [100, 950])) 

THEN   (turn 90) 
STRENGTH       949 

The EM process is divided into episodes that 
begin with the missile approaching the plane from a 
randomly chosen direction and that end when either 
the plane is hit or the missile velocity falls below a 
given threshold. The critic module provides numeric 
feedback at the end of each episode that measures 
the extent to which the missile has been successfully 
evaded. In the case of unsuccessful evasion, partial 
credit is given reflecting the plane's survival time 
(see (Grefenstette et. al, 1990)). Each decision rule 
is assigned a numeric strength that serves as a pred- 
iction of the rule's utility. The system uses incre- 
mental credit assignment methods (Grefenstette, 
1988) to update the rule strengths based on feedback 
from the critic received at the end of the episode. 
Experiments have shown that SAMUEL can learn 
high-performance rule sets (plans) for this task (Gre- 
fenstette, 1989). 

As can be seen from the above example, 
while the rules are individually understandable, the 
underlying strategy behind the rules is not usually 
clear from inspection.  On the other hand, a person 
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who watches a display of the EM task under the con- 
trol of the learned rules can usually describe the stra- 
tegy being followed in conceptual terms, for exam- 
ple: 

Get the missile directly behind the plane, let it 
get fairly close, then make a hard left turn. 

Once such a description has been obtained, qualita- 
tive reasoning can be applied to explain and justify 
the strategy. It is expected that explanation-based 
methods will help to explicate the higher-level stra- 
tegies being learned, making the results of the empir- 
ically learning more easily accepted by human 
operators and, ultimately, expediting the learning 
process itself. The remainder of the paper offers ini- 
tial steps in this direction. 

3 Explaining Empirically Derived Rules 
Our approach to applying explanation-based 

techniques to reactive plans can be divided into four 
phases: 

(1) inferring plausible subgoals; 
(2) confirming subgoal satisfaction; 
(3) creating explanations for reactive plans; and 
(4) deriving new rules. 

The following sections elaborate our approach to 
each of the first three phases. The fourth phase is 
outlined under our plans for future research. 

3.1 Inferring Plausible Subgoals 

Prior to deriving explanations that SAMUEL'S 

actions are intended to satisfy particular subgoals, 
the system first attempts to derive plausible subgoals, 
such as "increase range to missile" or "increase 
missile deceleration" from a trace of the behavior of 
the system under the control of the learned rules. A 
trace covering the actions occurring over a single 
episode is examined. Traces consist of snapshots of 
sensor readings followed by the decision rule that 
has fired. Each snapshot is associated with a time, or 
state. An example of a trace is shown in Figure 1, 
where "lturn", "brng", and "hdng" are abbrevia- 
tions for last turn, bearing, and heading. The action 
is the turn taken by the plane at this time. In order to 
simplify the trace shown here, the decision rules do 
not appear. 

A domain theory has been developed for 
automating subgoal derivation. This part of the 
domain    theory    consists    of   plausible    subgoal 

lturn time range brng hdng speed action 

0 0 1000 7 0 700 0 
0 1 600 7 0 650 135 

135 2 0 9 350 550 0 
0 3 300 3 290 400 45 

45 4 200 6 0 300 -135 
-135 5 100 4 20 250 90 
90 6 100 7 0 200 0 
0 7 300 6 0 200 45 

45 8 400 7 0 150 45 
45 9 500 8 0 150 45 
45 10 500 8 0 100 -90 
-90 11 600 5 0 100 -45 
-45 12 700 4 0 100 45 

Fig. 1. Example execution trace. 

derivation (PSD) rules such as the following: 

PSD 1: IF range(m) > RANGE1 
THEN PLAUSIBLE-SUBGOAL 
(INCREASING deceleration(m)) 

PSD 2: IF range(m) < RANGE2 
THEN PLAUSIBLE-SUBGOAL 
(INCREASING range(m)) 

where RANGE 1 and RANGE2 are user-definable 
parameters and m represents the missile. The trace is 
examined to find the first time at which a PSD rule 
precondition, such as "range(m) > RANGE1", 
holds. 

The algorithm for finding plausible subgoals 
is the following: 

PSD ALGORITHM: Find the set of all time inter- 
vals in the execution trace of an episode for which 
the sensor values satisfy the PSD rule condition dur- 
ing that interval. This set, called the trigger set, con- 
sists of situations that would plausibly trigger the 
implementation of a strategy to satisfy the subgoal 
specified in the PSD rule. 

In the example trace above, if RANGE 1 were 
set to 900, then there is one time interval (of length 
one unit) that satisfies the condition for PSD1. This 
interval is [0,0] and, therefore, the trigger set is sim- 
ply { [0,0] }.   Since PSD1 is satisfied, its subgoal, 



namely, "(INCREASING deceleration(m))", is pro- 
posed as a candidate subgoal. 

Once a plausible subgoal is found, the next 
task is to determine whether the subgoal has been 
satisfied. Satisfaction is determined by applying the 
confirmation procedure described in the next section 
for time intervals in the trigger set until either the set 
of intervals is exhausted or the subgoal has been 
confirmed. 

3.2 Confirming Subgoal Satisfaction 

Subgoal satisfaction is determined by once 
again scanning the execution trace. Scanning begins 
at the time in the trace following a time interval from 
the trigger set. Subgoal confirmation requires an 
additional domain theory. In this case, SAMUEL'S 

decision rule language is extended to capture further 
information from the trace. For example, the system 
extracts from the trace information about the change 
in sensor values over time. The speed or range of the 
missile, for instance, may increase from one state to 
the next. By scanning the trace over multiple states, 
the system derives acceleration and range increase 
information for confirming subgoal satisfaction. 

The confirmation of subgoal satisfaction 
begins when a time interval is chosen from the 
trigger set. In the current implementation, the user 
defines a window over which the subgoal satisfaction 
check is executed. The window begins at a user- 
defined time that is after the trigger set time interval. 
Continuing with the example above, suppose the sys- 
tem must confirm that the increasing missile 
deceleration goal has been achieved over the time 
window that extends from time 1 to time 3. Then the 
change in missile speed over this interval is checked 
to be certain that missile deceleration is increasing. 
The deceleration is increasing from 100 to 150 over 
this time interval. Therefore, subgoal satisfaction 
has been confirmed. 

Once subgoals have been derived and 
confirmed, explanations may be generated to justify 
the observed behavior. The next section describes 
the process of explanation generation. 

3.3 Creating Explanations 

After deriving plausible subgoals and 
confirming that they are satisfied, explanations may 
be formed which prove that sequences of SAMUEL's 
decision rules satisfy the subgoals. Explaining 
failure to satisfy subgoals is presented as future 

work. 

Creating justifications for successful subgoal 
satisfaction requires the development of a domain 
theory that captures important results of particular 
actions. We are adapting Forbus's Qualitative Pro- 
cess Theory (Forbus, 1984) for the interpretation of 
the empirically derived rules similarly to the way this 
theory is adapted in (Gervasio, 1989). Qualitative 
Process Theory (QP Theory) expresses common 
sense notions about qualitative relationships between 
objects. 

We are currently using QP Theory to define 
processes relevant to EM. A process is defined in 
(Forbus, 1984) as something that acts through time to 
change the parameters of objects in a situation. 
Example processes are fluid and heat flow, boiling, 
and motion. We define an EM process below. The 
individuals are the objects on which the process acts. 
The quantity conditions are inequalities regarding 
the quantities of individuals that can be predicted 
solely within dynamics. Preconditions are conditions 
that must hold during the process but which need not 
be predictable using dynamics. Relations are state- 
ments that are true during the process. A process is 
active whenever its preconditions and quantity con- 
ditions hold. The Q+/Q- relations define qualitative 
proportionalities. (Q+ X, Y) means that parameter X 
is directly proportional to parameter Y. (Q- X, Y) 
means that Xand Fare inversely proportional. 

process missile-evasion (p, m) 

Individuals: 
p, a plane 
m, a missile 

Quantity Conditions: 
speed(p) > 0 
speed(m) > 0 

Preconditions: 
range(m) > 0 

Relations: 
(Q+ deceleration(m), turning-rate(m)) 
(Q+ turning-rate(ra), turning-rate(/?)) 
(Q- speed(p), turning-rate(p)) 
(Q- turning-rate(m), range(m)) 

The above process description is incomplete 
and is not entirely accurate. Since we do not intend 



to engineer a complete and perfect domain theory, 
our system will eventually possess a capability to 
diagnose errors in its domain theory. 

Once a partial domain theory exists, it is pos- 
sible to create plausible explanations of the events 
that occurred during an EM episode. Explanations 
are derived by creating proofs using the process rela- 
tions similarly to (Gervasio, 1989). The proof begins 
with an observable but noncontrollable subgoal and 
terminates when a change in a controllable parameter 
has been found that is believed to have caused 
subgoal satisfaction. The body of the proof consists 
of QP Theory relational rules, such as those 
presented above. For example, the following proof 
explains how the increasing turning-rate of the plane 
eventually causes the missile deceleration to 
increase. 

(EXPLANATION 
(INCREASING deceleration(m)) 

((Q+ deceleration(m) turning-rate(m)) 
(Q+ turning-rate(m) turning-rate(p)) 
(INCREASING turning-rate(»))) 

The above proof has terminated with a state- 
ment that the plane turning rate is increasing. (The 
plane turning rate is currently the only controllable 
parameter.) The increasing turning rate is 
hypothesized as having initiated a strategy to achieve 
subgoal satisfaction. The system next verifies (by 
examining the execution trace) that this behavior 
has, in fact, occurred. For the above example, this 
would consist of a check to be certain that the plane 
turning rate is increasing during the time period that 
begins during the trigger set time interval and ends at 
some user-specified time following this interval. In 
the example trace above, the condition that the turn- 
ing rate must be increasing would be satisfied if the 
plane's actions were examined from time 0 to time 1. 

The selection of times for checking both 
subgoal satisfaction and triggering behaviors is 
currently done by the user. These are important 
parameters, yet they are difficult to choose. We next 
describe our plans for future work. These plans 
include automating the choice of these parameters, as 
well as other parts of the system. 

4 Future Work 
There are a few important directions that we 

plan to pursue. The first direction consists of ordering 

explanations according to their degree of plausibil- 
ity. The second direction consists of using the expla- 
nations to generate new decision rules for SAMUEL. 
Third, we plan to automate the generation of system 
parameters and rules. The fourth future direction 
consists of diagnosing failures. Finally, we would 
like to increase the complexity of the EM problem. 

Currently, we are running experiments to 
determine the differences in the degree of plausibility 
of various explanations. The manner in which this is 
being done is by generating explanations from multi- 
ple episode traces. From our experiences with expla- 
nation generation, we have been observing that some 
explanations/subgoals are considered plausible more 
frequently than others. We plan to use this informa- 
tion about the frequency to order the PSD rules in a 
manner that reflects the plausibility of explanations, 
e.g., more plausible subgoals are tried first. 

The second direction for future research con- 
sists of generating new decision rules from the expla- 
nations. If a subgoal is satisfied, and an explanation 
is generated for subgoal satisfaction, then the system 
can generalize the explanation (perhaps using the 
explanation-based learning methods of (Mitchell, 
Keller & Kedar-Cabelli, 1986)) and then use the gen- 
eralized explanation to generate new decision rules. 
Given a successful explanation, SAMUEL'S perfor- 
mance can benefit by the creation of new decision 
rules that are expected to achieve the same results as 
the rules from which the explanation is formed. The 
process of generating decision rules from generalized 
explanations is one of rule specialization. We are 
currently considering using ideas from MARVIN 
(Sammut and Banerji, 1986) for designing the rule 
specialization process. Once new decision rules 
have been created, they can be fed back into 
SAMUEL'S performance module to augment the exist- 
ing rule sets. These modified rule sets may then be 
empirically evaluated using the EM simulator. 

The third direction planned for our research is 
the automation of certain portions of the system that 
are currently provided by the user. For example, sys- 
tem parameters, such as the user-input window size 
for subgoal confirmation, might be empirically deter- 
mined. Furthermore, the domain theory might also 
be derived empirically. For instance, the Q+/- rela- 
tionships in the domain theory for explanations could 
be extracted from the execution traces. 

Although we have been able to generate 
explanations for successful subgoal satisfaction, a 
ripe area for future research is the addition of the 



ability to handle failures. If the system derives an 
explanation that the reactive rules are intended to 
achieve a particular subgoal, but the trace does not 
verify that the subgoal has been satisfied, then there 
exist four possible cases: 

(1) The chosen explanation is incorrect, but the 
domain theory is not faulty 
(2) The plausible subgoal that is inferred is not actu- 
ally the subgoal that the system is trying to achieve 
(3) The reactive rules are intended to achieve a 
subgoal, but the system has encountered some unex- 
pected interference 
(4) The domain theory is incorrect or incomplete 

Although the generation of alternative explanations 
would be a relatively simple a solution for the first 
case, the other cases would require more sophisti- 
cated error diagnosis. 

A final direction for future research is to 
increase the complexity of the EM problem. For 
example, the only controllable parameter currently 
implemented is the plane turning rate. More con- 
trollable parameters might be added. Furthermore, 
the problem difficulty would be greatly increased if 
the number of missiles were increased. Ultimately, 
we would like SAMUEL to be able to handle realistic 
problems. 

5 Summary 
Progress in generating and using explanations 

of reactive plans for SAMUEL is expected to provide 
an important step toward reducing the burden placed 
on the system's empirical learning mechanisms. The 
eventual goal of our research is to use these explana- 
tions to create high performance reactive plans. 
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